Friday 9 June 2017

biodiversity

Biodiversity

Biodiversity a portmanteau of "biological diversity," generally refers to the variety and variability of life on Earth. According to the United Nations Environment Programme, biodiversity typically measures variation at the genetic, the species, and the ecosystem level. Terrestrial biodiversity tends to be greater near the equator, which seems to be the result of the warm climate and high primary productivity. Biodiversity is not distributed evenly on Earth, and is richest in the tropics. These tropical forest ecosystems cover less than 10 per cent of earth's surface, and contain about 90 percent of the world's species. Marine biodiversity tends to be highest along coasts in the Western Pacific, where sea surface temperature is highest and in the mid-latitudinal band in all oceans. There are latitudinal gradients in species diversity. Biodiversity generally tends to cluster in hotspots, and has been increasing through time, but will be likely to slow in the future.
Rapid environmental changes typically cause mass extinctions. More than 99.9 percent of all species, amounting to over five billion species, that ever lived on Earth are estimated to be extinct. Estimates on the number of Earth's current species range from 10 million to 14 million, of which about 1.2 million have been documented and over 86 percent have not yet been described. More recently, in May 2016, scientists reported that 1 trillion species are estimated to be on Earth currently with only one-thousandth of one percent described. The total amount of related DNA base pairs on Earth is estimated at 5.0 x 1037 and weighs 50 billion tonnes. In comparison, the total mass of the biosphere has been estimated to be as much as 4 TtC (trillion tons of carbon). In July 2016, scientists reported identifying a set of 355 genes from the Last Universal Common Ancestor (LUCA) of all organisms living on Earth.
The age of the Earth is about 4.54 billion years old. The earliest undisputed evidence of life on Earth dates at least from 3.5 billion years ago, during the Eoarchean Era after a geological crust started to solidify following the earlier molten Hadean Eon. There are microbial mat fossils found in 3.48 billion-year-old sandstone discovered in Western Australia. Other early physical evidence of a biogenic substance is graphite in 3.7 billion-year-old meta-sedimentary rocks discovered in Western Greenland. More recently, in 2015, "remains of biotic life" were found in 4.1 billion-year-old rocks in Western Australia. According to one of the researchers, "If life arose relatively quickly on Earth .. then it could be common in the universe."
Since life began on Earth, five major mass extinctions and several minor events have led to large and sudden drops in biodiversity. The Phanerozoiceon (the last 540 million years) marked a rapid growth in biodiversity via the Cambrian explosion—a period during which the majority of multicellular phyla first appeared. The next 400 million years included repeated, massive biodiversity losses classified as mass extinction events. In the Carboniferous, rainforest collapse led to a great loss of plant and animal life. The Permian–Triassic extinction event, 251 million years ago, was the worst; vertebrate recovery took 30  The most recent, the Cretaceous–Paleogene extinction event, occurred 65 million years ago and has often attracted more attention than others because it resulted in the extinction of the dinosaurs.
The period since the emergence of humans has displayed an ongoing biodiversity reduction and an accompanying loss of genetic diversity. Named the Holocene extinction, the reduction is caused primarily by human impacts, particularly habitat destruction. Conversely, biodiversity positively impacts human health in a number of ways, although a few negative effects are studied.
The United Nations designated 2011–2020 as the [[United Nations Decade on Biodiversity]].

Etymology

The term biological diversity was used first by wildlife scientist and conservationist Raymond F. Dasmann in the year 1968 lay book A Different Kind of Country advocating conservation. The term was widely adopted only after more than a decade, when in the 1980s it came into common usage in science and environmental policy. Thomas Lovejoy, in the foreword to the book Conservation Biology, introduced the term to the scientific community. Until then the term "natural diversity" was common, introduced by The Science Division of The Nature Conservancy in an important 1975 study, "The Preservation of Natural Diversity." By the early 1980s TNC's Science program and its head, Robert E. Jenkins, Lovejoy and other leading conservation scientists at the time in America advocated the use of the term "biological diversity".
The term's contracted form biodiversity may have been coined by W.G. Rosen in 1985 while planning the 1986 National Forum on Biological Diversity organized by the National Research Council (NRC). It first appeared in a publication in 1988 when sociobiologist E. O. Wilson used it as the title of the proceedings of that forum.
Since this period the term has achieved widespread use among biologists, environmentalists, political leaders and concerned citizens.
A similar term in the United States is "natural heritage." It pre-dates the others and is more accepted by the wider audience interested in conservation. Broader than biodiversity, it includes geology and landforms.

Definitions


A sampling of fungi collected during summer 2008 in Northern Saskatchewan mixed woods, near LaRonge is an example regarding the species diversity of fungi. In this photo, there are also leaf lichens and mosses.
"Biodiversity" is most commonly used to replace the more clearly defined and long established terms, species diversity and species richness. Biologists most often define biodiversity as the "totality of genes, species and ecosystems of a region". An advantage of this definition is that it seems to describe most circumstances and presents a unified view of the traditional types of biological variety previously identified:
  • taxonomic diversity (usually measured at the species diversity level)
  • ecological diversity often viewed from the perspective of ecosystem diversity
  • morphological diversity which stems from genetic diversity and molecular diversity
  • functional diversity which is a measure of the number of functionally disparate species within a population (e.g. different feeding mechanism, different motility, predator vs prey, etc.)
This multilevel construct is consistent with Datman and Lovejoy. An explicit definition consistent with this interpretation was first given in a paper by Bruce A. Wilcox commissioned by the International Union for the Conservation of Nature and Natural Resources (IUCN) for the 1982 World National Parks Conference. Wilcox's definition was "Biological diversity is the variety of life forms...at all levels of biological systems (i.e., molecular, organismic, population, species and ecosystem)...". The 1992 United Nations Earth Summit defined "biological diversity" as "the variability among living organisms from all sources, including, 'inter alia', terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part: this includes diversity within species, between species and of ecosystems". This definition is used in the United Nations Convention on Biological Diversity.
One textbook's definition is "variation of life at all levels of biological organization".
Biodiversity can be defined genetically as the diversity of alleles, genes and organisms. They study processes such as mutation and gene transfer that drive evolution.
Measuring diversity at one level in a group of organisms may not precisely correspond to diversity at other levels. However, tetrapod (terrestrial vertebrates) taxonomic and ecological diversity shows a very close correlation.

No comments:

Post a Comment